The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Powering Down Cancer Cells – A New Way to Beat Leukemia?

Conceptual image of the destruction of a leukemia blood cell
Researchers at Lund University have developed an new strategy against leukemia that targets the energy production within cancer cells. Photo: Science Photo Library/

Cancer cells are the ultimate sugar addicts, gobbling up glucose to fuel their growth and spread. What if we could starve them of their favorite food? A recent study in Blood Advances by Lund University researchers describes a new method to combat leukemia by disrupting the energy-making machinery of cancer cells, cutting off their dual energy supply.

Despite advancements in treatment, acute myeloid leukemia (AML) remains a severe and challenging blood cancer to treat, affecting hundreds of adults in Sweden each year. Leukemia stem cells, which are responsible for AML's development and spread, are particularly to blame as they tend to develop resistance to standard treatments.

To address this issue and develop new targeting strategies, Lund University researchers set out to investigate the impact of different genes in leukemia stem cells using CRISPR-Cas9 screens, an advanced gene-editing tool, in animal models.

Maria Rodriguez Zabala in the lab pipetting.
Maria Rodriguez Zabala

"We discovered that leukemia stem cells are reliant on a specialized protein, GLUT1, to transport glucose across their cell membranes," says Maria Rodriguez Zabala, first-author of the study and PhD student at Lund University. "By suppressing the activity of GLUT1, we were able to stop the cancer cells' ability to consume glucose, reducing their ability to survive, adapt and multiply."

When further exploring the role of GLUT1 in leukemia cells derived from patients with AML, inhibiting GLUT1 alone was not enough to bring energy production to a full stop.

Cancer cells can use a super-fast pathway called glycolysis to turn glucose into energy, as well as another pathway called oxidative phosphorylation (OXPHOS). This second option allows cancer cells to use different kinds of fuel like amino acids and fatty acids to make energy. The researchers used a combination of a GLUT1 inhibitor and an OXPHOS inhibitor to power down the two primary metabolic pathways that cancer cells use, which created a more challenging environment for leukemia cells to survive and thrive in.

"Although the patient group was small, this combination was promising in eliminating the leukemia cells in the patient samples, with the leukemia cells of patients with a certain AML subtype (RUNX1-mutated) being specifically vulnerable to this combined therapy," noted Maria Rodriguez Zabala.

Marcus Järås. Photo.
Marcus Järås. Photo: Kenneth Ruona.

However, the researchers noted a possible limitation in inhibiting GLUT1 through clinical applications, as it is present in nearly all human cells. “Nonetheless, experiments conducted on mice showed that the GLUT1 inhibitor had minimal effects on noncancerous cells. Instead, cancer cells were specifically targeted, likely due to their high energy needs and activity levels,” explains Marcus Järås, associate professor at Lund University and leader of the research group behind the study.

The impact of this research extends beyond the lab and is expected to add to the growing body of knowledge around metabolism-targeting therapies. This group of therapies are a new and exciting frontier in the field of cancer treatment, which aim to interrupt cancer cells' energy production processes, thereby making them more receptive to other anti-cancer treatments.


Marcus Järås is an associate professor within the Division of Clinical Genetics at the Faculty of Medicine, Lund University. He is a principal investigator at Lund Stem Cell Center and the Lund University Cancer Center.

Profile in the Lund University Research Portal

Maria Rodriguez Zabala is a PhD student within the Targeted Therapies in Leukemia Research at the Division of Clinical Genetics, Faculty of Medicine, Lund University. 


Combined GLUT1 and OXPHOS inhibition eliminates acute myeloid leukemia cells by restraining their metabolic plasticity

Leukemia // Basic Research // In Vivo // Animal Study: Mice // Clinical Patient Samples

Funding for this research was provided by: the Swedish Cancer Society, the Swedish Childhood Cancer Foundation, the Swedish Research Council, governmental funding of clinical research within the National Health Services, Sweden, and the European Union’s (EU) Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Action (MSCA) grant.

This study was conducted in collaboration with: Niels-Bjarne Woods and both The Swedish Metabolomics Centre and the Computational Analytics Support Platform in Umeå, Sweden.