The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

How nanostraws can increase the number of blood stem cells

Electron microscope image showing a blood stem cell on top of a membrane with nanotubes. Photo: M. Hjort and L. Schmiderer
Electron microscope image showing a blood stem cell on top of a membrane with nanotubes. Photo: M. Hjort and L. Schmiderer

A multidisciplinary research team at Lund University has innovatively tackled what has long been a major problem in stem cell research. The project has now been awarded a Proof of Concept grant from the European Research Council, ERC.

Jonas Larsson, Professor of Molecular Medicine, and his research colleague Ludwig Schmiderer, together with Martin Hjort, a researcher at NanoLund, have developed the method of using nanotechnology to propagate blood stem cells for stem cell transplantation.

“We have built a carpet of microscopic nanostraws. When the blood stem cell lands on the mat, the tubes form a channel through the cell surface, where the molecules we want to add to the cell can enter”, explains Martin Hjort.

To deliver molecules into cells, the main methods used today are strong electric fields that tear open holes in the cell membrane or genetically modified viruses that seek out the cell and enter it to deliver the molecules. But these methods have side effects in the form of increased cell death and the risk of serious genetic changes.

To make the process clinically viable, we had to invent a transfer method that is gentle on the cell.

“In our previous studies from a recently completed ERC project, we have been able to identify a number of gene-regulating RNAi molecules that are very potent and greatly enhance the growth of blood stem cells. Obviously, we want to exploit these molecules to make stem cells multiply more efficiently before transplantation. But to make the process clinically viable, we had to invent a transfer method that is gentle on the cell. That’s where nanotechnology comes in,” says Jonas Larsson.

Portrait of Ludwig Schmiderer, Jonas Larsson, Martin Hjort (from left to right). Photo: Åsa Hansdotter.
From left: Ludwig Schmiderer, Jonas Larsson, Martin Hjort. Photo: Åsa Hansdotter

Under the carpet of nanostraws, are the RNAi molecules that the researchers want to bring into the cell. Using a weak electrical impulse, which does not adversely affect the cell, the molecules are charged into the blood stem cell through the tube that perforated the cell surface when the cell landed on the mat. 

Sometimes there are no suitable donors or not enough stem cells are produced to give all patients with leukemia or hereditary blood diseases the transplant that can save their lives. So, to grow blood stem cells, they are harvested – from umbilical cord blood after childbirth, for example – and multiplied in the laboratory. But blood stem cells are delicate and new technology is needed to grow them effectively. The global market value of blood stem cell transplantation has been estimated at over SEK 50 billion, so the research project has great potential for innovation:

“It is incredibly exciting to combine nanotechnology with stem cell biology to develop a method that can solve the problem of delivering therapeutic molecules into the cell without harming it. Receiving an ERC grant for this interdisciplinary concept is a step towards a new and more effective treatment for leukemia and hereditary blood diseases,” concludes Jonas Larsson. 

About the project:

The ERC’s mission is to encourage the highest quality research in Europe through competitive funding and to support investigator-driven frontier research across all fields, based on scientific excellence. ERC Proof of Concept gives frontier research projects who already received ERC grants the chance to explore the commercial or societal potential of their work.

ERC project title: "RNable: RNA and Nanotechnology Enable Wider Accessibility to Stem Cell Transplantation"

Key Links

Contacts:

Portrait of Prof. Jonas Larsson
Prof. Jonas Larsson. Photo credit: Kennet Ruona

Jonas Larsson
Principal Investigator
Department of Laboratory Medicine
Lund Stem Cell Center

Phone: + 46 46 222 05 80
Mail: Jonas [dot] Larsson [at] med [dot] lu [dot] se (Jonas[dot]Larsson[at]med[dot]lu[dot]se)

Profile in Lund University research portal

Research Group: Stem Cell Regulators 


Portrait of Ludwig Schmiderer
Ludwig Schmiderer. Photo credit: Simon Hultmark

Ludwig Schmiderer
PhD
Department of Laboratory Medicine
Lund Stem Cell Center

Mail: ludwig [dot] schmiderer [at] med [dot] lu [dot] se (ludwig[dot]schmiderer[at]med[dot]lu[dot]se)

Profile in Lund University research portal


Portrait of Martin Hjort
Martin Hjort. Photo credit: Navanbio.com

Martin Hjort
Assistant Researcher
Department of Experimental Medical Science
NanoLund: Center for Nanoscience

Phone: +46 73 618 58 66
Mail: martin [dot] hjort [at] med [dot] lu [dot] se (martin[dot]hjort[at]med[dot]lu[dot]se)

Profile in Lund University research portal